Selection: Computer Vision and Navigation

Author: Grigory Sapunov
Course
Description
Dates
1
Logoobjectdetection
Logoobjectdetection
Universitat Autònoma de Barcelona
Computer Science
Es Paid Free
Course added: 24 January 2015
El curso ofrece la oportunidad de aprender las principales técnicas de visión por computador que permiten detectar y reconocer objetos en una imagen. Está orientado a estudiantes interesados en adquirir el conocimiento necesario para el desarrollo de aplicaciones reales de detección y reconocimiento...
Details to be announced
2
9c7498ce-7be6-478b-b6aa-4d1465255a4b-5fcbae067b09.small
9c7498ce-7be6-478b-b6aa-4d1465255a4b-5fcbae067b09.small
Jürgen Sturm , Daniel Cremers , Christian Kerl
TUMx
Computer Science
Gb Paid Free
Course added: 29 December 2014
You will learn how to infer the position of the quadrotor from its sensor readings and how to navigate it along a trajectory. In recent years, flying robots such as miniature helicopters or quadrotors have received a large gain in popularity. Potential applications range from aerial filming over remote...
5 May 2015, 8 weeks
Favored by 1 person
3
Dlphlmafw8ni4x7o98v2lyrnkdxsfjpeuuc-kulygbyhlymdwnpu490a8isnp6j_vh-y_skcx8n_nui1wm8=s0#w=436&h=268
Dlphlmafw8ni4x7o98v2lyrnkdxsfjpeuuc-kulygbyhlymdwnpu490a8isnp6j_vh-y_skcx8n_nui1wm8=s0#w=436&h=268
This course will introduce you to the basics of AI. Topics include machine learning, probabilistic reasoning, robotics, computer vision, and natural language processing.
Free schedule
Favored by 1 person
4
Dtag60lui_xeuuedkzsip7-rp7g6slnwyhg9bbazg2ydp24mnc6r2tjzme5wnlljdi6ijqm-ycwo_gezug=s0#w=436&h=268
Dtag60lui_xeuuedkzsip7-rp7g6slnwyhg9bbazg2ydp24mnc6r2tjzme5wnlljdi6ijqm-ycwo_gezug=s0#w=436&h=268
Learn how to program all the major systems of a robotic car. Topics include planning, search, localization, tracking, and control.
Free schedule
Favored by 2 people
5
Recognition
Recognition
Вадим Никитович Козлов
МГУ
Computer Science
Ru Free
Course added: 14 January 2014
Теория распознавания образа -  раздел информатики и смежных дисциплин, развивающий основы и методы классификации и идентификации предметов, явлений, процессов, сигналов, ситуаций и т. п. объектов, которые характеризуются конечным набором некоторых свойств и признаков. Распознавание цифр, букв на экр...
24 April 2017
Favored by 3 people
6
Visionlablogo
Visionlablogo
Fei-Fei Li, Andrej Karpathy
Stanford
Computer Science
Gb Free
Course added: 19 January 2015
Computer Vision has become ubiquitous in our society, with applications in search, image understanding, apps, mapping, medicine, drones, and self-driving cars. Core to many of these applications are visual recognition tasks such as image classification, localization and detection. Recent developments...
5 January 2015, 11 weeks
4 January 2016, 11 weeks
1 March 2017
Favored by 6 people
7
Podvodnyie_robotyi_500400
Podvodnyie_robotyi_500400
Александр Федорович Щербатюк
ДВФУ
Ru Free
Course added: 29 December 2014
Развитие подводной техники и информационных технологий за прошедшие несколько десятков лет привело к созданию новых технических средств, в числе которых важное место занимают автономные необитаемые подводные аппараты. Подводные аппараты оснащены источником энергии, бортовой системой управления,  дви...
1 June 2015
Favored by 2 people
8
400px-nvidia_logo.svg
400px-nvidia_logo.svg
Nvidia
Computer Science
Gb Free
Course added: 19 July 2015
Deep learning is a rapidly growing segment of artificial intelligence. It is increasingly used to deliver near-human level accuracy for image classification, voice recognition, natural language processing, sentiment analysis, recommendation engines, and more. Applications areas include facial recognition...
22 July 2015, 11 weeks
Favored by 4 people
9
Nips-2013-poster-thumbnail
Nips-2013-poster-thumbnail
This tutorial will look at how deep learning methods can be applied to problems in computer vision, most notably object recognition. It will start by motivating the need to learn features, rather than hand-craft them. It will then introduce several basic architectures, explaining how they learn features...
Free schedule
Favored by 1 person

© 2013-2017