CS1156x: Learning From Data

CaltechX

Introductory Machine Learning course covering theory, algorithms and applications. Our focus is on real understanding, not just "knowing."

About this Course

This is an introductory course in machine learning (ML) that covers the basic theory, algorithms, and applications. ML is a key technology in Big Data, and in many financial, medical, commercial, and scientific applications. It enables computational systems to automatically learn how to perform a desired task based on information extracted from the data. ML has become one of the hottest fields of study today, taken up by undergraduate and graduate students from 15 different majors at Caltech. This course balances theory and practice, and covers the mathematical as well as the heuristic aspects. The lectures follow each other in a story-like fashion:

  • What is learning?
  • Can a machine learn?
  • How to do it?
  • How to do it well?
  • Take-home lessons.

The topics in the story line are covered by 18 lectures of about 60 minutes each plus Q&A.

  • Lecture 1: The Learning Problem
  • Lecture 2: Is Learning Feasible?
  • Lecture 3: The Linear Model I
  • Lecture 4: Error and Noise
  • Lecture 5: Training versus Testing
  • Lecture 6: Theory of Generalization
  • Lecture 7: The VC Dimension
  • Lecture 8: Bias-Variance Tradeoff
  • Lecture 9: The Linear Model II
  • Lecture 10: Neural Networks
  • Lecture 11: Overfitting
  • Lecture 12: Regularization
  • Lecture 13: Validation
  • Lecture 14: Support Vector Machines
  • Lecture 15: Kernel Methods
  • Lecture 16: Radial Basis Functions
  • Lecture 17: Three Learning Principles
  • Lecture 18: Epilogue

Course Staff

  • Yaser S. Abu-Mostafa

    Dr. Abu-Mostafa is a Professor of Electrical Engineering and Computer Science at the California Institute of Technology. His main fields of expertise are machine learning and computational finance. He is the co-author of Amazon's machine learning bestseller Learning From Data.

    Dr. Abu-Mostafa received the Clauser Prize for the most original doctoral thesis at Caltech. He won various Caltech and national teaching awards, including the Feynman Prize in 1996. He is the co-founder of the Neural Information Processing Systems (NIPS) annual conference, the top international conference on machine learning. He chaired a number of conferences on applying machine learning to finance, including Computational Finance (CF-99). In 2005, the Hertz Foundation established a perpetual graduate fellowship named the Abu-Mostafa Fellowship in his honor.

    Dr. Abu-Mostafa currently serves on a number of scientific advisory boards, and has served as a technical consultant on machine learning for several companies, including Citibank for 9 years. He has numerous technical publications including 3 articles in Scientific American, as well as several keynote lectures at international conferences.

Dates:
  • 25 September 2014, 10 weeks
Course properties:
  • Free:
  • Paid:
  • Certificate:
  • MOOC:
  • Video:
  • Audio:
  • Email-course:
  • Language: English Gb

Reviews

No reviews yet. Want to be the first?

Register to leave a review

Show?id=n3eliycplgk&bids=695438
Included in selections:
Small-icon.hover Machine Learning
Machine learning: from the basics to advanced topics. Includes statistics...
NVIDIA
More on this topic:
49250_a658_8 Microsoft Excel - From Beginner to Expert in 6 Hours
This Microsoft Excel class will make you a master of Microsoft Excel. The training...
Extensionflag Computing Foundations for Computational Science
Computation has long been an important tool for scientists, but the...
Mas-965f03 Special Topics in Media Technology: Cooperative Machines
This course examines the issues, principles, and challenges toward building...
Course__courses_comp187252__course-promo-image-1372341605 Learn C programming
Learn the first step in programming and learn the syntax of C programming with...
Predictionmachinelearning Practical Machine Learning
Learn the basic components of building and applying prediction functions with...
More from 'Computer Science':
695ff980-b45a-425f-bee6-51bf6e962d90-de2d1a1c22e0.small Video Game Design History
Learn about the evolution of video games from experts at The Strong National...
595aa0b6-077d-439b-a651-95a9ee65c51a-fc966dc2648f.small Video Game Design and Balance
Learn about the video game design process and experiment with effective methods...
Fcd236ea-68ae-46f7-b991-849a41cebc64-0ea84acf6bad.small Video Game Asset Creation and Process
Learn about the tools, processes and platforms that allow video game assets...
A76b4bf6-0720-4ffd-9858-cf71e6966ee7-42256c298336.small Introduction to Java Programming: Fundamental Data Structures and Algorithms
Learn to enhance your code by using fundamental data structures and powerful...
E391b4dd-ed7e-4aff-b349-7018280ec0f7-81fc169bd16f.small Arduino Programming, from novice to ninja
Learn to program an object using basic electronics and Arduino, and see that...
More from 'edX':
4178fda1-e8c7-476c-81e8-8a6b453a6a76-569208c21635.small Humanitarian Response to Conflict and Disaster
Learn the principles guiding humanitarian response to modern emergencies, and...
695ff980-b45a-425f-bee6-51bf6e962d90-de2d1a1c22e0.small Video Game Design History
Learn about the evolution of video games from experts at The Strong National...
595aa0b6-077d-439b-a651-95a9ee65c51a-fc966dc2648f.small Video Game Design and Balance
Learn about the video game design process and experiment with effective methods...
Fcd236ea-68ae-46f7-b991-849a41cebc64-0ea84acf6bad.small Video Game Asset Creation and Process
Learn about the tools, processes and platforms that allow video game assets...
A3940ac0-0757-4181-8b9d-5741f8a934fc-87e2da858ee6.small Minds and Machines
An introduction to philosophy of mind, exploring consciousness, reality, AI...

© 2013-2019