CS1156x: Learning From Data

CaltechX

Introductory Machine Learning course covering theory, algorithms and applications. Our focus is on real understanding, not just "knowing."

About this Course

This is an introductory course in machine learning (ML) that covers the basic theory, algorithms, and applications. ML is a key technology in Big Data, and in many financial, medical, commercial, and scientific applications. It enables computational systems to automatically learn how to perform a desired task based on information extracted from the data. ML has become one of the hottest fields of study today, taken up by undergraduate and graduate students from 15 different majors at Caltech. This course balances theory and practice, and covers the mathematical as well as the heuristic aspects. The lectures follow each other in a story-like fashion:

  • What is learning?
  • Can a machine learn?
  • How to do it?
  • How to do it well?
  • Take-home lessons.

The topics in the story line are covered by 18 lectures of about 60 minutes each plus Q&A.

  • Lecture 1: The Learning Problem
  • Lecture 2: Is Learning Feasible?
  • Lecture 3: The Linear Model I
  • Lecture 4: Error and Noise
  • Lecture 5: Training versus Testing
  • Lecture 6: Theory of Generalization
  • Lecture 7: The VC Dimension
  • Lecture 8: Bias-Variance Tradeoff
  • Lecture 9: The Linear Model II
  • Lecture 10: Neural Networks
  • Lecture 11: Overfitting
  • Lecture 12: Regularization
  • Lecture 13: Validation
  • Lecture 14: Support Vector Machines
  • Lecture 15: Kernel Methods
  • Lecture 16: Radial Basis Functions
  • Lecture 17: Three Learning Principles
  • Lecture 18: Epilogue

Course Staff

  • Yaser S. Abu-Mostafa

    Dr. Abu-Mostafa is a Professor of Electrical Engineering and Computer Science at the California Institute of Technology. His main fields of expertise are machine learning and computational finance. He is the co-author of Amazon's machine learning bestseller Learning From Data.

    Dr. Abu-Mostafa received the Clauser Prize for the most original doctoral thesis at Caltech. He won various Caltech and national teaching awards, including the Feynman Prize in 1996. He is the co-founder of the Neural Information Processing Systems (NIPS) annual conference, the top international conference on machine learning. He chaired a number of conferences on applying machine learning to finance, including Computational Finance (CF-99). In 2005, the Hertz Foundation established a perpetual graduate fellowship named the Abu-Mostafa Fellowship in his honor.

    Dr. Abu-Mostafa currently serves on a number of scientific advisory boards, and has served as a technical consultant on machine learning for several companies, including Citibank for 9 years. He has numerous technical publications including 3 articles in Scientific American, as well as several keynote lectures at international conferences.

Dates:
  • 25 September 2014, 10 weeks
Course properties:
  • Free:
  • Paid:
  • Certificate:
  • MOOC:
  • Video:
  • Audio:
  • Email-course:
  • Language: English Gb

Reviews

No reviews yet. Want to be the first?

Register to leave a review

Show?id=n3eliycplgk&bids=695438
Included in selections:
Small-icon.hover Machine Learning
Machine learning: from the basics to advanced topics. Includes statistics...
NVIDIA
More on this topic:
Mas-965f03 Special Topics in Media Technology: Cooperative Machines
This course examines the issues, principles, and challenges toward building...
18288_850c_7 Machine Learning Techniques for Analysing Web Data
An introduction to the math and processes to apply machine learning techniques...
49250_a658_8 Microsoft Excel - From Beginner to Expert in 6 Hours
This Microsoft Excel class will make you a master of Microsoft Excel. The training...
Small-icon.hover Machine Learning
Learn about the most effective machine learning techniques, and gain practice...
Predictionmachinelearning Practical Machine Learning
Learn the basic components of building and applying prediction functions with...
More from 'Computer Science':
D8d3c316-0e41-4083-93ff-733a7e9b16bb-46a802220de9.small Capstone Exam in Statistics and Data Science
Solidify and demonstrate your knowledge and abilities in probability, data analysis...
Logo2 Network Science
The course is an interdisciplinary course, focused on the emerging science of...
3734fd64-86ca-48d2-96cd-68012918b899-a001bb3f9d3d.small Gameplay Programming for Video Game Designers
Learn how to create the best gameplay by understanding algorithmic thinking...
Regular_1bb827eb-8ea2-482a-af4a-fd767b047713 Introducing Robotics: Making Robots Move
The world needs people who understand how to get robots moving.
Regular_cce76e9c-434e-42e9-a6b1-e2d402812376 Python in High Performance Computing
Learn how to analyse Python programmes and identify performance barriers to...
More from 'edX':
D8d3c316-0e41-4083-93ff-733a7e9b16bb-46a802220de9.small Capstone Exam in Statistics and Data Science
Solidify and demonstrate your knowledge and abilities in probability, data analysis...
949a4020-22e5-4762-9e15-8be6be00aedf-412a05da2ef9.small What Works in Education: Evidence-Based Education Policies
Learn what works in education and how to identify, analyze and implement evidence...
83c62468-3458-40cc-ac21-9eb3909ec204-be2d4e9c8ea9.small Risk Management in Development Projects
Learn to preemptively manage positive and negative events that may affect the...
75c23566-6acf-4db4-85d2-ac8f29f20377-c49ecd049460.small Global History Lab
Learn the span of world history from 1300 to the present. In this global history...
7bdf79de-56a9-4a5d-ae06-67c82a34a470-3dbd2386f2fb.small Leading Change: Go Beyond Gamification with Gameful Learning
Learn the tools to support gameful learning environments that foster personalized...

© 2013-2019