High-Dimensional Data Analysis

Rafael Irizarry, Michael Love, HarvardX

A focus on several techniques that are widely used in the analysis of high-dimensional data.

If you’re interested in data analysis and interpretation, then this is the data science course for you. We start by learning the mathematical definition of distance and use this to motivate the use of the singular value decomposition (SVD) for dimension reduction and multi-dimensional scaling and its connection to principle component analysis. We will learn about the batch effect: the most challenging data analytical problem in genomics today and describe how the techniques can be used to detect and adjust for batch effects. Specifically, we will describe the principal component analysis and factor analysis and demonstrate how these concepts are applied to data visualization and data analysis of high-throughput experimental data.

Finally, we give a brief introduction to machine learning and apply it to high-throughput data. We describe the general idea behind clustering analysis and descript K-means and hierarchical clustering and demonstrate how these are used in genomics and describe prediction algorithms such as k-nearest neighbors along with the concepts of training sets, test sets, error rates and cross-validation.

Given the diversity in educational background of our students we have divided the series into seven parts. You can take the entire series or individual courses that interest you. If you are a statistician you should consider skipping the first two or three courses, similarly, if you are biologists you should consider skipping some of the introductory biology lectures. Note that the statistics and programming aspects of the class ramp up in difficulty relatively quickly across the first three courses. By the third course will be teaching advanced statistical concepts such as hierarchical models and by the fourth advanced software engineering skills, such as parallel computing and reproducible research concepts.

These courses make up 2 XSeries and are self-paced:

PH525.1x: Statistics and R for the Life Sciences

PH525.2x: Introduction to Linear Models and Matrix Algebra

PH525.3x: Statistical Inference and Modeling for High-throughput Experiments

PH525.4x: High-Dimensional Data Analysis

PH525.5x: Introduction to Bioconductor: annotation and analysis of genomes and genomic assays

PH525.6x: High-performance computing for reproducible genomics

PH525.7x: Case studies in functional genomics

This class was supported in part by NIH grant R25GM114818.

 

What will you learn

  • Mathematical Distance
  • Dimension Reduction
  • Singular Value Decomposition and Principal Component Analysis
  • Multiple Dimensional Scaling Plots
  • Factor Analysis
  • Dealing with Batch Effects
  • Clustering
  • Heatmaps
  • Basic Machine Learning Concepts

Dates:
  • 10 September 2019
Course properties:
  • Free:
  • Paid:
  • Certificate:
  • MOOC:
  • Video:
  • Audio:
  • Email-course:
  • Language: English Gb

Reviews

No reviews yet. Want to be the first?

Register to leave a review

Show?id=n3eliycplgk&bids=695438
NVIDIA
More on this topic:
54f10d8d-e1cd-44a9-9fe3-af78afe8a9ed-e646d043ea61.small Fundamentals of Statistics
Develop a deep understanding of the principles that underpin statistical inference...
Small-icon.hover Digital Signal Processing
Learn the fundamentals of digital signal processing theory and discover the...
Movielens Introduction to Recommender Systems
This course introduces the concepts, applications, algorithms, programming,...
58333_95d5_12 Equity Research - A Comprehensive Program by edu CBA
The way an Equity Analyst / Investment Banker does! Includes Excel, Accounting...
Ph525x_course_verified262x136 PH525x: Data Analysis for Genomics
Data Analysis for Genomics will teach students how to harness the wealth of...
More from 'Mathematics, Statistics and Data Analysis':
Ef5dcb87-b65b-46a6-bb2a-c5a3f7807845-7cb915944555.small Engineering Calculus and Differential Equations
Learn fundamental concepts of single-variable calculus and ordinary differential...
20fedd71-34f4-4084-9fde-49f5d2d224a5-2f0bdb8c45f3.small Microsoft Professional Capstone : Big Data
Validate the skills you learned in the Microsoft Professional Program for Big...
07bd7954-0593-43cb-b0c4-0f18f5c25ee1-a5d93e120a6d.small Microsoft Professional Capstone : Data Science
Solve a real-world data science problem in this capstone project for the Microsoft...
86814127-5973-4549-884e-c8d6ea3514cb-8092d5a682f0.small Microsoft Professional Capstone : Artificial Intelligence
Solve a real-world artificial intelligence problem in this capstone project...
520f308b-128f-4d2c-af91-f646e1e312a8-df630e95f440.small Microsoft Professional Capstone: Data Analysis
Showcase the knowledge you acquired in the Data Analysis MPP in this Capstone...
More from 'edX':
4178fda1-e8c7-476c-81e8-8a6b453a6a76-569208c21635.small Humanitarian Response to Conflict and Disaster
Learn the principles guiding humanitarian response to modern emergencies, and...
695ff980-b45a-425f-bee6-51bf6e962d90-de2d1a1c22e0.small Video Game Design History
Learn about the evolution of video games from experts at The Strong National...
595aa0b6-077d-439b-a651-95a9ee65c51a-fc966dc2648f.small Video Game Design and Balance
Learn about the video game design process and experiment with effective methods...
Fcd236ea-68ae-46f7-b991-849a41cebc64-0ea84acf6bad.small Video Game Asset Creation and Process
Learn about the tools, processes and platforms that allow video game assets...
A3940ac0-0757-4181-8b9d-5741f8a934fc-87e2da858ee6.small Minds and Machines
An introduction to philosophy of mind, exploring consciousness, reality, AI...

© 2013-2019